Алгебра логики: Задачи

Задача 1.

- а) Сколько строк в таблице истинности для булевой функции $\mathbb{B}^n \to \mathbb{B}$
- b) Сколько бывает различных булевых функций $\mathbb{B}^n \to \mathbb{B}$

Задача 2. Придумать формулы для функций со следующими таблицами истинности.

- а) Операция **следствие** или **импликация**, в математике $A \to B$. Увтерждение A называют посылкой, а B заключением.
- b) Операция **исключающее или**, в математике \bigoplus , в коде $a^{\wedge}b$. Ещё говорят xor (ксор, от англ. excluding or)
- с) Операция **равносильность**, в математике \Leftrightarrow (реже \equiv), в коде ==.

A	B	$A \to B$
0	0	1
0	1	1
1	0	0
1	1	1

A	В	$A \bigoplus B$
0	0	0
0	1	1
1	0	1
1	1	0

A	B	$A \Leftrightarrow B$
0	0	1
0	1	0
1	0	0
1	1	1

Таблица истинности импликации согласуется с бытовым применением конструкции «если ..., то ...». Представим себе, что кто-то делает следующее заявление: «Если я завтра заболею, то не прийду на занятия». Если на следующий день этот человек не заболел и пришёл на занятия, следует ли считать, что он соврал? А если он не заболел и не пришёл? И то, и другое было бы странно, ведь человек ничего не говорил про этот случай. Нечто содержательное было сказано только для той ситуации, когда он заболел. Так что, если посылка импликации ложна, то и в обычной жизни утверждение-импликацию считают истинным. Можно посмотреть на этот пример с другой стороны: в каком случае мы сочтём заявление «Если я завтра заболею, то не приду на занятия» ложным? В одном-единственном случае: когда человек заболеет, но всё равно придёт на занятия. Такое понимание согласуется с приведённой таблицей истинности для импликации.

Задача 3. Выпишите таблицы истинности для следующих формул.

- a) $(A \bigoplus B) \to A$
- b) $(A \to B) \to C$
- c) $A \to (B \to C)$
- d) $(A \bigoplus B) \to (B \bigoplus C)$
- e) $(A \to B) \lor (C \land \neg B)$

Задача 4. Проверить, что следующие формулы являются тавтологиями.

- а) Закон двойного отрицания $\neg \neg A \Leftrightarrow A$
- b) Законы де Моргана $(\neg (A \lor B) \Leftrightarrow (\neg A \land \neg B))$ и $(\neg (A \land B) \Leftrightarrow (\neg A \lor \neg B))$
- c) Дистрибутивность \wedge $A \wedge (B \vee C) \Leftrightarrow (A \wedge B) \vee (A \wedge C)$
- d) Дистрибутивность \lor $A \lor (B \land C) \Leftrightarrow (A \lor B) \land (A \lor C)$
- e) Законы поглощения $(A \land (A \lor B) \Leftrightarrow A)$ и $(A \lor (A \land B) \Leftrightarrow A)$
- f) Доказательство от противного $((A \to B) \Leftrightarrow (\neg B \to \neg A))$

Задача 5. Рассмотрим целые числа x, y, z, t, w и два высказывания. A: (x + y + z + t + w - y) – чётное». $B: (x \cdot y \cdot z \cdot t \cdot w - y)$ – чётное». Докажите, что верно $A \to B$.

Задача 6. Упростить выражения

- a) $A \to (A \to B)$
- b) $(A \vee B) \wedge (A \vee \neg B)$
- c) $(A \Leftrightarrow B) \land (A \lor B)$
- d) $(\neg (A \lor B) \to (A \lor B)) \land B$
- e) $(\neg(\neg A \land \neg B) \lor (A \to B)) \land A$
- f) $(((A \lor \neg B) \to ((C \to \neg B) \lor B \lor A)) \land A) \to B$

Задача 7. У Юли 4 подруги: Оля, Ксюша, Настя и Маша. Она позвала одновременно их всех в гости, но некоторые из подруг поссорились между собой. Кто приедет в гости к Юле, если известно, что

- (а) Если Оля и Ксюша приедут, то Настя не приедет
- (b) Если Ксюша не приедет, то приедут Настя и Маша
- (с) Настя точно приедет

Задача 8. Придумать формулы для функций со следующими таблицами истинности.

A	В	C	a
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

A	B	C	b
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	0

A	B	C	c
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1
1	1	1	1

A	B	C	d
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1
1	1	1	1

Задача 9. Какие из следующих формул являются тавтологиями?

- a) $((A \to B) \land A) \to B$
- b) $((A \land B) \to C) \to ((A \to C) \land (B \to C))$
- c) $((A \to B) \land (B \to C)) \to (A \to C)$
- d) $(A \to B) \to (B \to C)$
- e) $((A \to C) \land (B \to D)) \to ((A \land C) \to (B \land D))$
- f) $((A_1 \lor A_2) \land (A_1 \to B) \land (A_2 \to B)) \to B$
- g) $(A \to (B \to C)) \Leftrightarrow ((A \to B) \to C)$
- h) $(A \land (B \to C)) \Leftrightarrow ((A \land B) \to (A \land C))$
- i) $(A \to B) \lor (B \to A)$

Задача 10. Запишите пропозициональную формулу, выражающую приведенное рассуждение, и проверьте, является ли она тавтологией.

Если инвестиции останутся постоянными, то вырастут правительственные расходы или возникнет безработица. Если правительственные расходы не вырастут, то налоги будут снижены. Если налоги будут снижены и инвестиции останутся постоянными, то безработица не возникнет. Следовательно, правительственные расходы вырастут.

Школа 57 Информатика

Задача 11. Проверьте правильность рассуждения. Для этого представьте каждое предложение в виде формулы и проверьте, является ли оно тавтологией. Рассмотрим 3 утверждения.

- (А) Все деды волшебники.
- (В) Дед Мороз волшебник.
- (С) Существует хотя бы один дед-волшебник.

Заметим, что, очевидно, верно $(A \to B)$ т.к. если все деды волшебники, то волшебник и Дед Мороз. Также верно $(B \to C)$, ведь если Дед Мороз - волшебник, то существует хотя бы один дед-волшебник (например, тот же Дед Мороз). Но неверно $(A \to C)$, ведь утверждение о том, что все деды – волшебники, не гарантирует существование хотя бы одного деда.

Мы знаем, что $((A \to B) \land (B \to C) \to (A \to C))$ – тавтология. Как разрешить полученное противоречие?

Задача 12. Докажите, что $A \lor B$ нельзя выразить через \Leftrightarrow , \bigoplus , T.

Задача 13. Докажите, что для любой булевой функции можно придумать формулу, которая задаёт эту функцию. В формуле разрешается использовать только ¬, ∧, ∨

- a) Можно ли обойтись \neg , \wedge ?
- b) Можно ли обойтись \neg , \rightarrow ?
- c) Можно ли обойтись \land , \rightarrow , F?
- d) Можно ли обойтись \land , \rightarrow ?

Задача 14. Сколько решений имеют следующие системы уравнений

$$a) \begin{cases} A \to B \equiv T \\ B \to C \equiv T \end{cases} b) \begin{cases} (A_1 \to A_2) \to (A_3 \to A_4) \equiv T \\ (A_3 \to A_4) \to (A_5 \to A_6) \equiv T \end{cases} c) A_1 \to A_2 \to \dots \to A_n \equiv T \\ (A_5 \to A_6) \to (A_7 \to A_8) \equiv T \end{cases}$$

Задача 15. Сколько существует булевых функций от трёх переменных P(A, B, C), изменяющих своё значение при изменении значения любой одной из переменных?