Алгебра логики: Теория

Определение 1. *Высказыванием* будем называть предложение, про которое можно сказать, что оно истинно или ложно.

Пример 1. "Все квадратные уравнения имеют 2 различных корня" — $\mathit{высказываниe}$

Определение 2. Переменные, которые обозначают высказывания, называются *пропозициональными переменными*. Обычно для таких переменных используют заглавные латинские буквы A, B, C и так далее. Такие переменные могут принимать 2 выделенных значения — F и T (False/True или Ложь/Истина или 0/1). Множество $\{F, T\}$ назовём \mathbb{B} .

Определение 3. *Погические операции* - операции над высказываниями, позволяющие составлять новые высказывания путём соединения более простых.

Есть 3 основных логических операции.

- 1. *Конъюнкция*, оператор **И**, в математике \land , в коде &&
 - $A \wedge B$ истинно тогда и только тогда, когда истинны оба A **И** B
- 2. Дизтинкция, оператор **ИЛИ**, в математике \lor , в коде ||
 - $A \lor B$ истинно тогда и только тогда, когда истинно хотя бы одно из утвеждений, то есть A **ИЛИ** B.
- 3. *Отрицание*, оператор **HE**, в математике \neg , в коде!
 - $\neg A$ истинно тогда и только тогда, когда A ложно.

Заметим, что конъюнкция и дизъюнкция оперируют с двумя утверждениями, тогда как отрицание — с одним. Говорят, что конъюнкция и дизъюнкция бинарные операции, а отрицание — унарная.

Определение 4. *Формулой* называется строка составленная из переменных, скобок и логических операций.

Способ построения формул описан строгим набором естественных правил, который мы тут не приводим, но дадим следующие два примера.

Пример 2.
$$(A \wedge B) \vee (\neg C \wedge \neg A) - \phi$$
ормула

Пример 3. $((A \neg BC))) \lor -$ не формула

Определение 5. *Булевой функцией* называется отображение $\mathbb{B}^n \to \mathbb{B}$. Заметим, что всякая формула естественным образом задаёт функцию.

Определение 6. В отличие от привычных числовых функций в алгебре, для булевых функций можно выписать её результат для всех возможных комбинаций значений параметров. Соответствующая таблица называется *таблицой истичности*.

Пример 4. Таблицы истинности для основных логических операций.

A	B	$A \vee B$
0	0	0
0	1	1
1	0	1
1	1	1

A	B	$A \wedge B$
0	0	0
0	1	0
1	0	0
1	1	1

A	$\neg A$
0	1
1	0

Определение 7. Формулы, верные для любой комбинации значений аргументов, называются *тавтологиями*.

Пример 5. $(A \lor \neg A)$ – *тавтология*, а $((A \land B) \lor (\neg A \land \neg B))$ – не *тавтология*. Эти примеры можно проверить, выписав соответствующие таблицы истинности.